A scikit-learn Pipeline model
Model age
54 days old
Model details
['facility_type', 'risk', 'total_violations', 'month', 'year']
features.scikit-learn
Pipeline involving an encoder for categorical variables and a RandomForestClassifier to make predictions.Intended use
Training data & evaluation data
{'facility_type': {'default': 'RESTAURANT',
'title': 'Facility Type',
'type': 'string'},
'risk': {'default': 'RISK 1 (HIGH)', 'title': 'Risk', 'type': 'string'},
'total_violations': {'default': 31.0,
'title': 'Total Violations',
'type': 'number'},
'month': {'default': 11, 'title': 'Month', 'type': 'integer'},
'year': {'default': 2019, 'title': 'Year', 'type': 'integer'}}
Ethical considerations
Caveats & recommendations
Model performance over time. In this context, performance is the statistical properties of the model, specifically, accuracy and recall. The data is grouped by week, starting in January of 2023 until July of 2023.
index | n | metric | estimate |
---|---|---|---|
Loading... (need help?) |
Inspections that our model misclassified, in either direction.
results | preds | facility_type | risk | aka_name | inspection_date |
---|---|---|---|---|---|
Loading... (need help?) |